High-speed designs use digital components with very fast edge rates in their output signals which can be subjected to significant distortion and degradation creating high bit-error-rates and lower data throughput.  Insertion and reflection losses, crosstalk and impedance mismatch, are all factors, amongst others, influencing the integrity of a transmitted signal.

Empower’s E-CAP silicon capacitors provide wide bandwidth low impedance highly stable decoupling capacitors capable of being placed close and even integrated into an SoC substrate.

Empower Semiconductor is developing power management solutions enabling full unrestricted speed and performance of the latest xPUs.

  • High power density
  • High bandwidth conversion
  • Low power distribution losses
  • Vertical Power

The ability to process data and perform complex calculations at high speeds has been intensified in recent years by leaps in technologies such as artificial intelligence, 3-D imaging and autonomous driving. These technologies have exacerbated the need for faster and more complex processors and architectures.

Equipment designed to operate within a high magnetic field environment can experience power failures or abnormal operating conditions due to the force the magnetic field imposes on ferromagnetic material-based electronics.

Moreover, magnetic resonance imaging (MRI) devices can record false or distorted images due to the inferences from such electronics. Empower’s IVRs regulators use non-ferromagnetic air-core inductors ideal for operating in harsh magnetic environments.

Data being communicated and processed around the globe is rapidly growing, driving the need for a new generation of faster data processing components and elements in data centers and datacom equipment.

Empower Semiconductor offers novel fully integrated power management solutions that both increase performance and solve the power density challenge of space-constrained data-intensive applications.

Click for more

System-on-Modules (SOMs) and Computer-on-Modules (CoMs) provide all components of an embedded processing system (processors, communication interfaces, memory blocks, power management, etc.) on a single production-ready printed circuit board (PCB). This modular approach makes them ideal for embedding into a variety of end systems and applications.Empower’s IVRs provide high-density configurable multi-rails regulators enabling rapid and flexible prototyping.

Chiplet architectures are rapidly gaining popularity over monolithic designs in developing complex SoCs. While providing increased performance, design flexibility and upgradability, they do, however, require more complex power management and PCB routing.

Empower’s IVRs can be integrated as an additional chiplet into an SoC increasing the power delivery efficiency and simplifying PCB routing.

有源电缆

随着每一代数据中心连接的带宽翻倍,有源电缆即使不是短距离连接的主导,也将变得更加普遍。有源电缆有两种类型:有源电缆 (AEC),有时称为有源铜缆 (ACC),以及有源光缆 (AOC)。两种类型的可插拔收发器都与多股铜缆或光纤电缆永久连接在一起。所有可插拔收发器,无论是铜线还是光纤,都使用行业标准的 3.3V 电源运行,它们必须从中获得内部所需的电源轨。根据所部署的半导体技术,这可能只是几条轨道或多达八到十条。

一般来说,实现AEC所需的电源轨比AOC少,目前至少一家AEC商业硅供应商提供单一个电压轨–3.3V的方案。由于这种简单性,我们将集中讨论AOC,其电源需求更为复杂。

AOC的结构通常与普通的光收发器一样,需要激光器、激光器驱动器、TIA(跨阻抗放大器)和CDR(时钟和数据恢复)等硅结构块。由于AOC的定义是短距离,VCSEL激光器是首选的激光器。高性能的400G收发器可能还需要额外的组件,如DSP。

AOC 通常由与常规光收发器相同的硅构建块构成,因为它们需要激光器、激光驱动器、TIA(跨阻抗放大器)和 CDR(时钟和数据恢复)。由于 AOC 根据定义是短距离的,因此 VCSEL 激光器是首选激光器。高性能 400G 收发器可能还需要额外的组件,例如 DSP。
在构建 400G AOC 时,可以选择 4 个 100G 通道或 8 个 50G 通道。由于 50G 通道是较老、更成熟的技术,50G 通道的成本将低于 100G 通道,因此大多数 400G 电缆最初将使用 8x50G 配置。 IEEE对50G的8个lane进行了标准化,命名为400GBASE-SR,简称400G-SR8。虽然该标准不适用于 AOC,但相同的芯片主要用于设计收发器和 AOC。而且至少有一个芯片组不使用 DSP。这样的实现可能会使用以下电源轨。

Table 1: non-DSP AOC Power Rails

在本例中,我们只处理两个电压:1.8V 或输入源 3.3V。可以使用单个 1.8V 1A 降压转换器为该架构提供电源,我们可以使用 3.3V 输入 Empower IVR 来生成此电源轨。

DSP 实现将具有更复杂的电源树。 CMOS DSP 通常需要几个电源:核心数字、数字 I/O 和一个或两个模拟电源轨,如表 2 所示。

Table 2: DSP-Based Power Rails

创建表 2 中电源轨的传统方法是使用分立降压转换器。图 1 中提出了基于该方法的解决方案。

Figure 1: Discrete Converters to Address Power Rails in Table 2

这种方法很实用——它可以完成工作,但需要 45 个组件和大约 360 平方毫米的 PCB 空间,系统效率为 88%。图 2 显示了使用 Empower IVR 的替代实施

Figure 2: Empower IVR to Address Table 2 Power Rails

使用 Empower 方法的目标是减少组件数量和电路板占用空间。所示的 EP7029C 处理 DSP 的内核和模拟轨。为了给 EP7029C 供电,使用大尺寸1.8V 电源轨,以便它可以偏置 IC 并仍然为其他负载供电。 Empower 方法实现了占位面积和 BOM 减少的目标,因为组件的总数减少到只有 15 个,PCB 面积缩小到 155mm2。系统效率仍然是可观的 85%,考虑到组件减少 3 倍和面积减少 2 倍,这是可以实现的最佳结果。图 3 显示了该电路的实现。

图3:Empower IVR电路实现表2电源导轨

随着设计人员不断被要求将更多功能集成到更小的空间中,电源设计正受到前所未有的挤压。虽然传统的降压稳压器技术以尺寸换取效率,但 Empower IVR 可以通过提供两全其美的方式来避免这种妥协。